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Abstract: Traditionally, entropy changes are corrected for rotational permutability only if the molecule is
perfectly rotationally symmetric. By this approach, only a small fraction of all known molecules must be
evaluated in terms of symmetry numbers, while all other molecules are totally exempt of these considerations.
A general approach which encompasses all molecules, symmetric or not, is proposed here. It is based on
introducing the notion of continuity to symmetry numbers and on allowing noninteger values. In the first
part of the account, we provide argumentation as to why continuity is needed and what difficulties one may
encounter by adopting the “black-or-white” approach to symmetry. In the second part, we provide a working
methodology of how to evaluate the symmetry number content of any molecule, symmetric or not. Finally,
in the third part, we demonstrate the implications of this approach on entropy issues involving melting
points, Jahn-Teller distortions (of fullerene) upon ionization, molecular distortion due to overcrowdedness,
permutability of isotopes, and the structure of proton sponges. It is shown that continuous symmetry numbers
provide entropy values, which better agree with experimental observations, and that they are capable of
identifying correlations between symmetry and physical/chemical measurables.

1. Symmetry Numbers: Discrete and Continuous

The Topic of This Study. Symmetry numbers have been
traditionally used to correct entropy values only for molecules
which are perfectly rotationally symmetric (at least oneCn

rotation element,n > 1). Even the slightest deviation from a
perfect Cn has led either to a discrete jump to a lowerCn

resulting in abrupt change in the calculated entropy or, in the
absence of an exact lowerCn, to the definition of the molecule
as having no rotational symmetry whatsoever (C1) and conse-
quently to an assumption of zero effect on entropy. The vast
majority of the known∼23 000 000 molecules either have no
perfect symmetry axis at all or deviate to some degree from an
obviousCn, and thus either have been traditionally left out of
the framework of rotational-symmetry entropy adjustment or
treated in terms of a lowCn. We propose that the notion of a
certain subgroup of molecules- the perfectly symmetric ones
- which must be evaluated in terms of symmetry numbers,
while regarding most other molecules astotally exempt of these
considerations, may amount to a neglect of important elements
in the rich library of stereochemistry and of their relation on
entropy changes. This is particularly so because at ordinary
temperatures the contribution to entropy changes from the
translational, vibrational, electronic, and nuclear components
tends in many instances to be small as compared to that from
the rotational entropy component. Rotational symmetry is
therefore a major factor in determining a large array of molecular
properties,1-12 and some central examples are listed below.

In this report, we propose a general approach and a general
working methodology, which allowsall molecules, symmetric
or not, to be analyzed in terms of symmetry numbers and their
contribution to rotational entropy. We do so by introducing
continuity to symmetry numbers and by allowing noninteger
values. Let us begin with the rationale of this proposition.

The Necessity of Continuity in Symmetry Numbers.We
focus then on the entropy-change contribution,∆Sσ, to statistical
effects, which is due purely to rotational symmetry as repre-
sented by the symmetry number,σ. We recall thatσ is defined
as the number of rotational operations which permute atoms in
a molecule; that is, it is the order of the rotational-symmetry
subgroup of the molecule, containing the rotational-symmetry
operations (including the identity operation).13 We also recall
that it was introduced so as not to count more than once
orientations that are indistinguishable by rotation.13,14 ∆Sσ and
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σ are related through:1,15

where the indices A and B refer to two species at equilibrium,
B being the “product” and A being the “reactant”. For a
particular species, one defines similarly:1,15

It is useful to recall that∆Sσ (eq 1) is subtracted from the
rotational entropy change,∆SR (∆SR ) ∆Stherm - [Sσ(B) -
Sσ(A)] ) ∆Stherm - ln[σ(B)/σ(A)]; see ref 16 for details). It
follows that for a chemical/structural change leading from a
reactant A to a product B and eventually to an equilibrium
between the two, the change in the symmetry numbers will
contribute toward an increase of the total rotational entropy, if
A is more symmetric than B (a positive [-ln[σ(B)/σ(A)] term;
see ref 16 for a specific example).

As an introductory case, illustrating the need for continuity
in eqs 1 and 2 is provided by the Jahn-Teller (JT) distortion
of C60 fullerene, induced by its (reversible electrochemical)
reduction17 to the monoanion, C60

1-. The icosahedral (Ih)
symmetry of the neutral C60 structure changes only very slightly
(see below) upon the addition of one electron, and yet the current
treatment of this minute changerequiresone to totally redefine
the symmetry of the product, which in this case isD3h. Let us
evaluate how this jump in symmetry assignment affects the
entropy change: Havingσ ) 60 for Ih-C60 andσ ) 6 for the
D3h anion, one obtains from eq 1 (R ) 8.314 J/K‚mol) an
overestimated∆Sσ of -19.14 J/(K‚mol), which amounts to a
T∆Sσ contribution to ∆G of 5.74 kJ/mol at 300 K (!), an
unrealistically huge value if one considers that it originatesonly
from a minor shape change. Does not it make more physical
sense to analyze the symmetry of the anion, which so slightly
deviates from its original icosahedricity, in terms of its nearly
icosahedral content? A method capable of doing so would
introduce continuity to symmetry numbers, allowing one to
identify aσ value between the extremes of 6 and 60, and if that

method reflects reality properly, the physically relevantσ output
will be much higher than theσ ) 6 of D3h and quite close to
the σ ) 60 of Ih. This, in turn, would lead to a much more
realistic estimation of∆Sσ; that is, its value will be small,
conforming with what the eye sees, that the anion is nearly
icosahedral. We return to this introductory example in section
3.

Problems of this type abound in chemistry. Basically, they
are rooted in the conceptual inflexibility of the definition of
the symmetry numbers which demands a “yes or no” answer18

and which therefore bends the rich reality of stereochemistry
to the dictates of a strict codex, behind which are hidden, first,
the paradigm that exact symmetry is superior and therefore must
set the rules and, second, the practical aspect that fully
symmetric situations are easier to formulate theoretically. Of
course, the treatment of molecules through the eyeglasses of
perfect symmetry is responsible for some of the more important
advancements in chemistry, and yet we believe that time has
come to move ahead of the first-order perfect-symmetry
approach, recognizing that much of chemistry beyond the atomic
level is not symmetric.

The strict codex of perfect symmetry can become particularly
devastating in the case of small deviations from symmetry
which, according to the current approach, force a jump in the
symmetry description, the magnitude of which is totally out of
proportion from to that deviation. In such cases, the drastic
reduction in the symmetry numbers forces an artificially major
change in entropy. Because so much in chemistry is dictated
by small molecular conformational adjustments, the need for a
realistic description of such changes cannot be underestimated.
Some of the many questions in chemistry, which are associated
inherently with symmetry numbers and for which continuity
considerations may turn out to be beneficial, are as follows:
How do molecular symmetry distortions affect physical reactiv-
ity properties? How does symmetry affect melting points? What
is the concentration-ratio value of an equilibrium, which involves
a rotational-symmetry change? How are symmetry-dictated
concerted reactions affected by symmetry upon interaction?
What is the rotational contribution to entropy changes upon
molecular associations, clustering, and hydrogen bond forma-
tion? What is the correct symmetry number to be attached to
fluxional molecules?

Let us take the last question as a second illustration for the
need for continuity. Pitzer posed in 1939 the following problem:
18 “Ordinarily one would assign a symmetry number of three
to pyramidal NH3 or six to a hypothetical planar NH3... If the
pyramid is rapidly reversing itself the effective symmetry should
also be six.” Two important issues are raised here: First, the
value of symmetry numbers depends on the resolution of
measurement, spatial or temporal. A fast camera will see here
σ ) 3, but a slow one will seeσ ) 6. Which then reflects the
molecule? The second issue concerns the gradual transition from
pyramidality to planarity. Because one end of this process has
σ ) 3 and the other hasσ ) 6, what happens in the middle
from the point of view ofσ values? Again we propose that a
gradual, continuous change in resolution of observation or in

(14) The symmetry numbers were introduced in the rotational partition function
by: Ehnrenfest, P.; Trkal, V.Proc. Sect. Sci., Amsterdam1920, 23, 162.
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entropy is reduced to a larger extent in the more symmetric molecule.
Following (IV), for a process leading from a reactant A to a product B
until equilibrium is reached, the rotational entropy change is then:∆SR )
∆Stherm - (Sσ(B) - Sσ(A)) (V) and ∆SR ) ∆Stherm - ln[σ(B)/σ(A)] (VI).
Returning to theD6h/D3h example, consider a (hypothetical) reaction
inducing this change in symmetry, that is, an isomerization or a trisubstituion
reaction of benzene (reactant A). The change in rotational entropy due to
the change in the symmetry numbers isR ln(6/12) ) -5.76 J/(K‚mol).
That is, in eq V, the entropic symmetry term adds (twice negative) to the
total rotational entropy, reflecting the conversion to a lower symmetry (A
to B).
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conformation should be represented by a gradual, continuous
scale of symmetry numbers. It is perhaps appropriate to recall
here Carl von Linne´’s statement in his “Philosophia Botanica”
(Stockholm, 1751) that “Natura non facit saltus,” “Nature does
not make jumps,” which is indeed the motto of this study.

Several of the central issues raised here are treated with
specific examples in section 3, following the layout of the
continuous symmetry numbers methodology in section 2.

2. The Methodology of Continuous Symmetry Numbers

The following is a list of methodological questions to be
addressed. (a) How does one construct a definition of a
continuous symmetry number, σc, that will follow, in a continu-
ous and gradual way, changes or deviations from exact
symmetry, such that it will coincide withσ for a perfectly
rotational symmetric structure but will decrease continuously
as the structure deviates more and more from that symmetry?
(b) To answer the first question, one should be able to evaluate
quantitatively the deviation from rotational symmetry. How
should this task be carried out? (c) In an imperfect symmetry
structure, what are the relevant imperfect rotational axes to be
analyzed? In other words, what is the relevant reference structure
representing perfection? (d) The counting procedure of the
symmetry number is straightforward: Each of thek - 1 perfect
(and only perfect) rotation operations contributes toσ the
counting valuerk ) 1 (as does the identity operation):

Imperfect axes are not at all looked at; that is, in practice they
are counted asrk ) 0. Under the continuous approach, after
the relevant axes have been identified, what should be the
counting value,rk, of a specific imperfect axis? (e) Once one
has the counting values,rk, for all relevant (perfect and
imperfect) axes, how should they be accumulated toward the
total continuous symmetry number,σc? (f) Finally, having aσc

value at hand, how should it relate to the symmetry-number
entropy,Sσ?

We were led by three guidelines in formulating specific
procedures for answering these questions: minimalism in
assumptions, simplicity in formalism, and adherence to the
rationale that led to the classical equations. The details follow
in the next sections.

The Counting Value of an Imperfect Rotation Element.
We begin with the following question: Given an imperfect
rotational axis, how should it be counted toward the total
symmetry number,σc? We generalize the counting value to

where Sy evaluates the degree of deviation of a specific rotation
operation from perfectness. Sy has a value of 0 for perfect
symmetry, grows continuously as the deviation increases, and
reaches 1 for the maximal possible deviation. What then do
nonintegerrk < 1 values mean? Whilerk ) 1 reflects perfect
rotation, anrk value of, say 0.96, indicates slight symmetry
deviation,rk ) 0.54 indicates a major deviation,rk ) 0.02 casts
doubt on the relevance of the selected axis, andrk ) 0 reflects
an absolutely irrelevant axis (e.g., aC5 symmetry element of a
(distorted) hexagon). Our next task then is to evaluate Sy.

The Evaluation of the Symmetry Content in an Imperfect
Rotation Element. The methodology for the evaluation of the

degree of symmetry on a continuous scale has been developed
intensively since the early 1990’s19-24 and has found useful
applications including quantitative correlations between the
degree of symmetry (and/or chirality) and a variety of chemical/
physical/biochemical parameters which intimately relate to
symmetry.25-27 Basically, the continuous symmetry measure
(CSM) is a distance function- an approach commonly
employed in shape analyses28 - but with a special feature: Sy
is a general minimal distance function tosymmetry, in contra-
distinction to the commonly used distance to a predetermined
reference structure.28 The task of evaluating Sy is demanding:
Having a symmetry-distorted structure, the shape and coordi-
nates of the ideal symmetry reference structure, the distance to
which should be evaluated, are usually unknown. If, for instance,
one wishes to evaluate theC4-ness of a distorted tetragon, then,
of course, the relevant reference shape is of a perfect square;
but if one wishes to evaluate theC2 content of that tetragon,
then there is an infinite number ofC2-symmetric structures (bent
and two-dimensional (2D) parallelograms) which can serve as
reference shapes. The SCM methodology identifies a specific
C2-symmetric structure, which provides theminimal distance
from the tetragon. Thus, the distance function we shall employ
has also the task of finding the structure to which the distance
should be computed.

Formally, let M be a structure composed ofn vertices (atoms)
in an original configuration,Qi, and let G be any symmetry
point group. The amount of G-symmetry in M is then defined
as

Here Pi are the searched corresponding points of the nearest
G-perfectly symmetric configuration, andD is a size normaliza-
tion factor (the rms of all distances from the center of mass to
the vertices), making Sy size-invariant. The distanceQi - Pi is
squared to avoid sign limitations, as is a common practice in
distance-function formulations. The bounds of Sy are 0 (Qi

coincides withPi; M is perfectly symmetric) and 1 (the nearest
symmetric structure coalesces onto a center point, the distance
to which is 1, as in the above-mentioned degree ofC5-ness of
a perfect hexagon. Because most symmetry deviations which
are of interest in chemistry are not of this form but are rather
small, the 0-1 scale has been expanded in our previous
experimental analyses publications to a 0-100 scale, for
convenience of handling the Sy values, but this expansion is
not applied here). Several algorithms were developed for the
identification ofPi, and the interested reader is referred to refs
21-23 for details. When applied to a large array of symmetry
related problems, Sy proved to be well behaved mathematically
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(25) Katzenelson, O.; Edelstein, J.; Avnir, D.Tetrahedron: Asymmetry2000,

11, 2695.
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σ ) ∑
k

rk (3)

rk ) 1 - Sy (4)

Sy(M,G))
1

nD2
∑
i)1

n

|Qi - Pi|
2 (5)
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and capable, as mentioned above, of detecting many quantitative
correlations with symmetry or chirality.22-27

Equation 5 has been used in all of our previous studies for
the evaluation of deviation from a symmetry group, G, as a
whole. However, for the evaluation of the symmetry number,
the deviation of the studied structure from being symmetric
toward each of the rotational elements of the rotational subgroup,
Grotat, is to be calculated separately; Sy(Cn

m) is to be evaluated
for all n’s andm’s for all Cn

m’s of Grotat. Equation 5 is directly
applicable for that purpse as well (Appendix A). As an example
of a relevant set ofCn

m’s, consider the following simple 2D
“flatland” example (not to be confused with the 3D analysis of
Figure 1), where one wishes to evaluate the 2D-symmetry
number of a flat trapezoid with reference to a perfectC4-square;
one then needs to compute the Sy value of the four symmetry
operations{C4, C4

2, C4
3, E}. Here, Sy(C4) ) Sy(C4

-1) ) Sy-
(C4

3); the distance to a perfect square (which supportsC4 and
C4

3) is searched. However,C4
2 ) C2; that is, for the evaluation

of the symmetry measure ofC4
2, one searches for the nearest

perfect parallelogram, the shape of which is a-priori unknown,
and, finally, Sy(E) ) 0. It is important to note that when Sy-
(C4) is computed, the resulting nearestC4-symmetric object is
of course characterized also as beingC2-symmetric, and yet Sy-
(C2) must be calculated separately forC4

2, because the distance
to C2 andC4 need not be the same (the latter is usually larger
because the vertices adjustment to higher symmetry requires
larger vertices motion). In general,Cn andCn

n-1 differ only in
the direction of the rotation; andCn

k Cn
l ) Cn

k+l andCkm
k ) Cm.

Obtaining the Continuous Symmetry Number.Having a
method for estimation of Sy, we apply it for each of the relevant
rotation operations (“relevant” is discussed below) and obtain
for each a counting value,rk, from eq 4. How should the
resulting nonintegerrk values be accumulated towardσc, the
continuous symmetry number? We follow the original definition,
eq 3, and similarly accumulate therk’s according to

wherek ) 1, 2, ...,k are the relevant rotations.
The Continuous Symmetry Number Relation to Entropy.

As for the correlation ofσc with Sσ(c), again we follow eqs 1
and 2:

For an equilibrium which is built from A (reactants) to B
(products):

As noted above for the classical use of eqs 1 and 2, here too
one should recall16 that∆Sσ(c) is subtractedfrom the rotational
entropy change,∆SR. The outcome is similar to that of the
classical treatment, but on a continuous scale: If A is less
symmetric than B, the change in the continuous symmetry
numbers will contribute toward a decrease of the total rotational
entropy.

Selection of the Relevant Rotation Elements.Three con-
ceptual novelties are introduced in this paper, all of which are
interconnected. One is the continuity in symmetry numbers,
which we addressed in section 1. In this section, we address

the two other new concepts, which relate to the methodological
question we raised above: In an imperfect symmetry structure,
what are the relevant (imperfect) rotational axes to be analyzed?
In other words, what is the relevant reference structure
representing perfection? As we shall see shortly, the answer
we propose to this question has consequences not only for
symmetry-imperfect structures but for structures of perfect
symmetry as well and therefore on the classical discrete
approach.

Returning to our flat trapezoid example, is the reference
perfect 2D-rotational symmetry that of a parallelogram (a
rectangle) withσ ) 2 or that of a perfect square withσ ) 4?
In other words, should one evaluate for this case only Sy(C2),
searching for the nearest rectangle, or should one also evaluate
the distance to a perfect square to evaluate Sy(C4) (and Sy(C4

3))?
Indeed, the two options seem to be open, and, in studying the
symmetry content of an object, the various Sy values illuminate
characteristic features of the structure.

However, the link between the symmetry number and entropy
requires a unique selection of ideality out of the possible options.
That unique selection must be, in our view, the following: Given
an (imperfect rotationally symmetric)n-vertices structure, the
relevant rotational operations to be evaluated and counted toward
the symmetry number are those which belong to the highest
rotationally symmetric structure obtainable from the same
number of vertices, retaining the same connectivity.

The new concept here is that even for a perfect 90°
2D-parallelogram, the relevantσc is not 2, but 2< σc < 4!
What is the rationale for adopting this counting procedure?
Consider a 2D-square (σ ) σc ) 4), which we begin to elongate
gradually into a rectangle. After 0.01% of elongation, although
barely detectable, we already have a rectangle. The classicalσ
jumps down to 2, but it is obvious that the tetragon is much
more a square than a rectangle, and this will be reflected in the
continuous approach by, say,σc ) 3.99. It has been our claim,
as detailed above, that from the point of view of entropy, the
fact that this very slightly elongated square is strictly a rectangle
is much less relevant than the fact that rotating it by 90° will
practically leave the rotation unrecognized. This argument
follows continuously with the continuation of the elongation.
In particular, whileσ is incapable of following this process and
reports all rectangles, regardless of their elongation, as having
a constantσ ) 2, σc will gradually decrease with the elongation,
departing more and more from 4. In other words, we claim that
all rectangles carry a “memory” of being squares to a certain
degree.

Our proposition to replace the “yes/no” detection with
graduation leads to the following change in the classical
approach to the correction of entropy due to symmetry:
Remaining with the same example, while the discrete approach
to theSσ term recognizes only the contribution of two rotational
operations (those of the rectangle)- even if a rectangle is very
near to a square- we propose that the correctionmust take
into account the fact that there are two additional operations,
which are capable of replicating the structure, at least approxi-
mately. Thus,σc for a rectangle contains contributions both from
a perfectC2 operation (rk ) 1) and from imperfectC4 andC4

3

operations (rk < 1). It follows that according to the continuous
symmetry methodology, in general,σc g σ. Therefore, it also
follows that the continuous approach leads to total entropies

σc ) ∑
k

rk ) ∑
k

(1 - Sy)k (6)

SσC
) R ln σc (7)

∆Sσ(c) ) R ln[σc(B)/σc(A)] (8)
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which are smaller as compared to values obtained by the
classical approach. Because this, we acknowledge, is a major
change over the classical discrete view, let us elaborate on this
third novel concept with a specific example.

Symmetry/Entropy Changes along a Reaction Coordinate.
Still with the square-rectangle example, let us now move to the
3D world and analyze a model of a [2+ 2] concerted reaction.
We recall that it is a symmetry dictated photochemical process
in which two ethylenes are allowed to interact only in aD2h

symmetry, ending up in aD4h cyclobutane (which immediately
relaxes to a diagonally bentC2V structure, with bond length
adjustments). For simplicity of argument, let us analyze the
allowed reverse process of the gradualD2h rectangular ring
elongation of theD4h cyclobutane (which leads eventually to
ring rupture). According to the classical approach (Figure 1),
the moment theD4h cyclobutane begins to elongate, itsσ ) 8
drops abruptly to theσ ) 4 of the D2h rectangle, and this
symmetry number remains constant along aD2h-preserving
reaction coordinate. The continuous approach offers a distinctly
different picture (Figure 1): The symmetry number changes
gradually along the reaction coordinate, decreasing continuously
from σc ) 8. All along the reaction coordinate, the symmetry
number is composedbothof the contribution from the constant
rectangular background level ofσ ) 4 andof the contribution
from the decreasing similarity to a perfect square (leading to
an asymptote ofσc ) 6 for an infinitely thin rectangle;σc > 4,
because the specific four points connectivity is retained even
at infinity and thus some memory of perfect “squareness”
persists even there, and specifically 6, because of the definition
of eq 5). In other words, in the continuous approach, the
symmetry number of a [2+ 2] ring opening is always larger
than 4. In terms of entropy changes which accompany the
reaction, while the classical approach requires an abrupt increase
in entropy the moment the reaction begins and then stays at a
constant low level which is dictated byσ ) 4 (Figure 2), our
picture is first of a more ordered system than classically
considered (8g σc g 6) and of a system of which the rotational

disorder is gradually being built as the reaction proceeds (Figure
2). Note that entropic relaxation of the reaction works fast at
the beginning (we shall see the same behavior in other examples
below) and that the residualD4h-ness keeps the reacting system
from going down to the level which has been based on the
assumption ofσ ) 4. We propose here that this observation is
of more general nature: Whenever rotational-symmetry changes
along a reaction coordinate, more order is preserved along the
process than was classically assumed. This conclusion should
also have marked effects on the reaction free energy map. This
then is the third important conceptual novelty of this report.

To what extent does the layout of section 2 reflect reality?
To what extent are the assumptions and definitions justified?
To answer these questions (section 4), we first provide several
examples which demonstrate how the continuous symmetry
methodology approaches some key problems in chemistry.

3. Examples

3.1. Arbitrary Assumptions Made in the Literature
Appear Natural in the Continuous Approach. There are many
examples in the literature where the discrete symmetry numbers
approach had forced authors to make arbitrary assumptions, so
that models and theories will conform to experimental results.
Here are two examples which demonstrate that under the
continuous symmetry numbers approach, such arbitrary as-
sumptions become natural. We do not go into the specific details
but just focus on the changes brought about by the continuous
language.

3.1.A. Molecules with Nonidentical Permutable Atoms:
Isotopes.East and Radom studied third law entropies of several
molecules,29 one of which was isotopically labeled CS2,
34S12C32S. A question arises: What is the symmetry number to
be assigned to it? Is it 1 (C∞h) or 2 (D∞h)? Each assumption
leads, of course, to different rotational entropies, to 71.42 or
65.41 J/(K‚mol), respectively. Classically, because the34S-12C
and12C-32S bonds differ in length, one must takeσ ) 1, and
yet the experimental result agrees withσ ) 2(!). In an attempt
to overcome this difficulty, East and Radom write that:29 “One
can see that the entropies for these two forms differ primarily
by the-R ln 2 [factor],” and they solve this discrepancy in an
arbitrary way “by including the-R ln 2 term,” by assuming
that 32S12C34S doeshave aC2 axis. In our application, this
assumption is a natural outcome: The12C-34S and12C-32S

(29) East, A. L.; Radom, L.J. Chem. Phys.1997, 106, 6655.

Figure 1. (A) Elongation of a planar square to a rectangle (the edges ratio,
a/b, decreases). The symmetry numbers, from left to right, are 8, 4, and 4,
respectively, but the continuous symmetry numbers,σc, are 8, 7.2, and 6.1.
(B) The gradual change of the continuous symmetry number in (A) with
the elongation (b).

Figure 2. Entropy changes (J/K‚mol) due to changes in rotational symmetry
along the process coordinate of Figure 1: the classical treatment (b) and
the continuous treatment (O).
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bonds are slightly different (approximately 3%, based on mass
effects on vibrational amplitudes), and therefore the molecule
is nearly C2-symmetric, resulting inσc ) 1.9988 and in-R
ln(1.9988) as the symmetry correction factor, very close to the
arbitrary correction factor of East and Radom.29

Thus, an outcome is that from the point of view of symmetry
terms, isotopes are permutable. An interesting question follows
(to be worked separately): To what extent then must permutable
atoms be identical? Ortho/para hydrogen, polymorphs of crystals
which impose different neighborhoods on same-type atoms,30

and adsorption of molecules through one of otherwise identical
atoms are additional examples of where this question is relevant.
In most of these instances, the differently “labeled” atoms are
also associated with (minor) variations in geometry and therefore
are candidates for the continuous symmetry numbers analysis.

3.1.B. Melting Points. Melting points analyses and the
understanding of their trends are intimately linked with sym-
metry numbers.31 While attempting to explain the “higher-than-
expected melting points” of cycloalkanes (cyclohexane, in the
example commented on here), Wei32 noticed that the explanation
he provides fails with the “standard assumption”, that “Cyclo-
hexane has a symmetry number ofσ ) 6 (D3d) at -100 °C
[where the molecule packs as a crystal] andσ ) 12 (the [liquid
phase] “average planar”D6h) at room temperature.”32 However,
when he usesarbitrarily the “average conformer’s” value ofσ
) 12 for the crystal form (instead ofσ ) 6), then his specific
explanation (see ref 32 for details) holds for the abnormal
melting point. In the continuous symmetry approach, a value
which is close to the arbitraryσ ) 12 comes naturally: Given
the definition of relevant perfect symmetry- D6h - the
cyclohexane chair conformer has several perfect rotations (which
belong to itsD3d subgroup symmetry) and several imperfect
rotation elements with respect toD6h. Accumulating therk values
((we use this case for a demonstration of specificrk values; so
as not to overload the paper, these are not given in the next
case analyses) for the axes perpendicular to the molecular plane,
rk (C6) ) 0.899,rk (C6

5) ) 0.899,rk (C3) ) 1.000,rk (C3
2) )

1.000, andrk (C2′) ) 0.899; for the threeC2 axes bisecting
opposite vertices of the hexagon,rk (C2) ) 0.899; and for the
threeC2 axes bisecting opposed edges of the hexagon,rk (C2)
) 1.000), one arrives at aσc value of 11.394 (!), very close to
Wei’s arbitrary assumption,32 corroborating in a natural way
his theory.

3.2. The Symmetry Numbers of Sterically Strained Mol-
ecules.When sterically overcrowded molecules distort to assume
minimal-energy conformation,33,34 entropy increases. Here we
show that the contribution of entropy increase as a driving force
for distortion has been grossly overestimated (leaving the burden
mainly on enthalpy changes). Let us analyze several perhalo-
genated hydrocarbons which distort from planarity (for X-ray
diffraction structures, see Figure 3): octachloronaphthalene (A)
(which has been described as possessing one of the shortest
intramolecular Cl‚‚‚Cl distances, on the order of 300 pm between

the chlorine atoms inperi positions35), octachlorotetraradialene
(D) (described as “a severely distorted four-membered ring”36),
dodecachlorotriphenylene (C) (which has a propeller-shaped
structure37), and the fluorinated analogue (B) of the last
molecule.38We determine now the change in the symmetry
number from the hypothetically nondistorted molecules to the
distorted ones. Classically, all are converted from a high
symmetry number (see Table 1) toσ ) 1,39 and these changes
are translated to relatively highT∆Sσ terms (Table 1, fourth
column). According to the continuous symmetry approach, the
T∆Sσc values are much smaller because, as explained above,
we treat the deviations not as a jump in symmetry but as a
process which retains some of the original (hypothetical) full
symmetry; the values, along with the symmetry measure of
planarity (the degree ofσh-ness of the molecule),19-21 are
collected in Table 1 as well.

While the set of four molecules just analyzed deviate upon
distortion both from planarity and from rotational symmetry
(Type I in Table 1), this need not always be the case. Thus,
distortion from planarity can occur while preserving the
rotational axes (Type II in Table 1 and Figure 4: tetrakis-
(dimethylamino)ethene,40 octamethylnaphthalene,41 1,10-di-
iodotriphenylene,42 and octaphenyldibenzo[a,c]-naphthacene43

((A), (D), (B), and (C), respectively, in Figure 4)). In such cases,

(30) Wall, F. T. Chemical Thermodynamics; W. H. Freeman and Co.: San
Francisco, 1958; p 271.

(31) Kitaigorodskii, A. I. Organic Chemical Crystallography; Consultants
Bureau: New York, 1961; Chapter 4.

(32) Wei, J.Ind. Eng. Chem. Res.1999, 38, 5019.
(33) Schastnev, P. V.; Schegoleva, L. N.Molecular Distortions in Ionic and

Excited States; CRC Press: Boca Raton, FL, 1995.
(34) Bock, H.; Ruppert, K.; Nothler, C.; Havlas, Z.; Herrmann, H.-F.; Arad,

C.; Godel, I.; John, A.; Meuret, J.; Nick, S.; Rauschenbach, A.; Seitz, W.;
Vaupel, T.; Solouki, B.Angew. Chem., Int. Ed. Engl.1992, 31, 550.

(35) Herbstein, F. H.Acta Crystallogr., Sect. B1979, 35, 1661.
(36) van Remoortere, F. P.; Boer, F. P.J. Am. Chem. Soc.1970, 92, 3355.
(37) Shibata, K.; Kulkarni, A. A.; Ho, D. M.; Pascal, R. A.J. Org. Chem.1995,

60, 428.
(38) Hursthouse, M. B.; Smith, V. B.; Massey, A. G.J. Fluorine Chem.1977,

10, 145.
(39) Sometimes symmetry higher thanC1 is claimed for the distorted molecule,

but detailed analysis shows that this is not the case. For instance,
octachloronaphthalene has been reported to haveD2 symmetry.35 However,
there are deviations from the threeC2 axis resulting in nonzero values of
Sy(C2) for this molecule. Yet, even taking higher symmetries thanC1 does
not change the basic arguments of this section.

(40) Wiberg, N.Angew. Chem., Int. Ed. Engl.1968, 7, 766.
(41) Sim, G. A.Acta Crystallogr., Sect. B1982, 38, 623.
(42) Bock, H.; Sievert, M.; Havlas, Z.Chem.-Eur. J. 1998, 4, 677.
(43) Qiao, X.; Ho, D. M.; Pascal, R. A.Angew. Chem., Int. Ed. Engl.1997, 36,

1531.

Figure 3. The structures, as determined from X-ray diffraction data, of
distorted molecules of Type I (see Table 1 for details).
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the rotational-entropy cost of distortion is low according to the
continuous approach (third column, Table 1, Type II).

3.3. Changes in the Symmetry Number upon Reaction.
3.3.A. Symmetry Changes upon Protonation: Proton Sponges.
Proton sponges are organic bases, very often diamines such as
1,8-bis(N,N-dimethylamino)naphthalene.44-47 These bases are
structurally distorted as a consequence of the strong repulsion
of the neighboring unshared electron pairs of the nitrogen atoms.
However, upon protonation which is facilitated by a strong
intramolecular hydrogen bond (Figure 5), some of the steric
strain is relieved. A major problem associated with the proton
sponges has been where is the added proton located? The two
extreme possibilities are demonstrated in Figure 5. In one, the
proton is located exactly in the middle between the nitrogen

atoms (option B), and in the other (option A) the proton is
attached covalently to one nitrogen and is hydrogen bonded to
the other. Experimental methods, in particular X-ray crystal-
lography, have been unable to distinguish between these two
options.

In terms of the classicalσ values, this difficulty translates
into the need for a subjectiveσ assignment, eitherσ ) 2 or σ
) 1 for cations B and A, respectively. This, in turn, leads to a
major difference in the assignment of the rotational-entropy
change involved in the protonation equilibrium: It is either zero
or -1.73 kJ/mol (at 25°C) for σ ) 2 andσ ) 1, respectively.
The 1.73 kJ/mol option is much too high, taking into account
that the enthalpic differences between the two equilibria have
been estimated to be only 2.7 kJ/mol in the gas phase and 2.1
kJ/mol in aqueous solution.46 On the other hand, the zero option
obviously neglects the changes in the symmetry content. We
show now how the continuous symmetry approach addresses
this problem.

For the unprotonated base, a value ofσc ) 1.9993 is obtained
from the available X-ray structural data,48 indicating that this
molecule belongs to the class which eases steric pressure by
moving away from planarity while maintaining the rotational
axes. Indeed, its measure of planarity is Sy(σh) ) 5.24, a
relatively high value. As for the protonated species, theσc values
for the cations B and A, based on standard bond lengths, are
2.0000 and 1.9864, respectively,49-54 leading to entropy changes
of 0 and-16.04 J/mol (at 25°C). These values indicate that
the nonsymmetric option has a very small rotational-entropy
preference; in fact, the difference between 0 and-16.04 J/mol
is not enough for determining a real preference for one of the
two options of protonation. This conclusion is in agreement with

(44) Staab, H. A.; Saupe, T.Angew. Chem., Int. Ed. Engl.1988, 27, 865.
(45) Alder, R. W.Chem ReV. 1989, 89, 1215.
(46) Llamas-Saiz, A. L.; Foces-Foces, C.; Elguero, J.J. Mol. Struct.1994, 328,

297.
(47) Pozharskii, A. F.Russ. Chem. ReV. 1998, 67, 1.

(48) Einspahr, H.; Robert, J.-B.; Marsh, R. E.; Roberts, J. D.Acta Crystallogr.,
Sect. B1973, 29, 1611.

(49) The structure for symmetric proton position was taken as the average of
those determined by X-ray diffraction in refs 50 and 51. In the case of the
asymmetric position, the structures of refs 52 and 53 were averaged. In all
cases, the distances N-H-N computed by ab initio quantum chemical
methods were taken into account as reported in ref 54.

(50) Kanters, J. A.; Schouten, A.; Kroon, J.Acta Crystallogr., Sect. C1991,
47, 807.

(51) Bartoszak, E.; Jaskolski, M.Acta Crystallogr., Sect. B1994, 50, 358.
(52) Kanters, J. A.; Terltorst, E. H.; Kroon, J.Acta Crystallogr., Sect. C1992,

48, 328.
(53) Wozniak, K.; He, H.; Klinowski, J.; Jones, W.; Barr, T. L.J. Phys. Chem.

1995, 99, 14667.
(54) Perakyla, M.J. Org. Chem.1996, 61, 7420.

Table 1. Continuous Symmetry Numbers and Their Contributions
to the Rotational Entropies of Highly Strained Molecules

moleculeb σc(σ)c

−T∆S(σc)d

(300 K)
(J/mol)

−T∆S(σ)e

(300 K)
(J/mol) Sy(σh)f

Type Ia

octachloronaphthalene (A) 3.9721 (4) 17.45 3457.6 1.73
perfluorotriphenylene (B) 5.8428 (6) 66.22 4468.9 3.29
perchlorotriphenylene (C) 5.7416 (6) 109.80 4468.9 6.79
octachlorotetraradialene (D) 7.5408 (8) 147.47 5186.4 11.24

Type IIa

tetrakis(dimethylamino)ethene (A) 3.9953 (4) 2.74 3457.6 11.63
1,10-diiodotriphenylene (B) 1.9924 (2) 9.50 1728.8 2.77
octaphenyldibenzo[a,c]-
naphthacene (C)

1.9962 (2) 4.74 1728.8 17.02

octamethylnaphthalene (D) 4.0000 (4) 0.00 3457.6 4.31

a Type I: Distortion of both planarity and rotational symmetry. Type
II: Distortion of planarity while preserving the rotational axis.b For
structures, see Figures 3 (Type I) and 4 (Type II).c Values in parentheses
correspond to the hypothetical nondistorted molecules.d The continuous
symmetryT∆S values.e Assuming the classical approach of total loss of
symmetry upon distortion.f Continuous symmetry values of planarity
(multiplied by 100).

Figure 4. The structures, as determined from X-ray diffraction data, of
distorted molecules of Type II (see Table 1 for details).

Figure 5. Two possible equilibria between a proton sponge and its
protonated form. Bottom, the symmetric option B (see text); top, the
nonsymmetric option A.

A R T I C L E S Estrada and Avnir

4374 J. AM. CHEM. SOC. 9 VOL. 125, NO. 14, 2003



the common view that the cation exists in fast tautomerism, as
shown in Figure 5.47

3.3.B. The Reduction of C60 Fullerene. Our introductory
example in section 2, illustrating the need for continuity, was
provided by the JT distortion of C60 fullerene, induced by its
reduction to the monoanion.17 This reduction will also serve
now as our final example: We analyze the reductive formation
of the first six C60-fullerene anions,17 for which, as we shall
now show, the difference between the discrete and continuous
approaches is particularly evident. In section 1, we drew
attention to the fact that, classically, the small structural change
induced in C60 upon charging to C60

1- is associated with an
abrupt drop in symmetry fromIh to D3h, which causes a drop
from σ ) 60 toσ ) 6, leading to a grossly overestimated∆Sσ

of -19.14 J/(K‚mol) and to aT∆S of 5.74 kJ/mol (at 300 K).
Similar abrupt changes without any reasonable order, as well
as grossly overestimated values of rotational entropy changes,
are also obtained for the rest of the consecutive reductions
toward C60

6-, as summarized in Table 2.55 Note also that there
is a smooth variation in the structural properties of the fullerene
upon charging, which shows up, for instance, in the (calculated)
lengths of the double bonds and of the radii, and that this isnot
reflected by the classical symmetry numbers approach. On the
other hand, the continuous symmetry approach provides a
natural solution to these problems (Table 2): Theσc values are
close to 60, reflecting the minor structural changes as compared
to those of the uncharged molecule: they vary continuously
with charge, the∆Sσ values are small, as they should be, and
they correlate (nearly linearly) not only with the double bond
lengths and radii but also with an experimental observable, the
reduction potential,56 and no correlation whatsoever is obtained
with the classical symmetry numbers. Note that the main change
in σc follows the first charging, but then upon additional
charging, the variations are small, reflecting the very small
structural changes.57

4. Concluding Remarks

Our proposed continuous measure and its relation to entropy
are not based on first principles. Yet, the objective of their
introduction has been achieved: to put on the discussion table

the notion of continuity in symmetry numbers and to show that
even on the empirical level practiced here, many literature
observations fall in place, and values are corrected in the right
direction. Thus, we have shown that graduality in physical and
structural parameters, which is lost by the discrete approach, is
reproduced by the continuous approach and that new correlations
with symmetry are identified which otherwise have been blurred.
The introduction of continuity gave rise to another important
new concept: Because there is some degree of symmetry in
any nonsymmetric object, there is more order- lower entropy
change- than was previously assumed for nonsymmetric
processes and systems.

Why does this measure, which has in it a degree of
arbitrariness, represent reality so faithfully? We believe that this
is due to two elements. First, no other definition for the distance
function can be more minimalistic and natural than ours: The
symmetry measure is the minimal distance to the desired
symmetry. Second, in linking the measure to rotational entropy,
we followed the least biased route: We applied the continuous
symmetry number along the same footsteps as was practiced
classically for the discrete symmetry number.

We hope we convinced the reader that even if details may
change- for example, different definitions than those employed
here - the concept of continuous symmetry is a natural
extension of the classical treatment and is here to stay.
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Appendix: The Folding -Unfolding Procedure for Cn
m

Elements

The basic algorithm for obtaining theS(G) values was based
on the “folding-unfolding” procedure, described in detail in
refs 19 and 20. It was originally designed to evaluate the degree
of G-ness as a whole. However, it is applicable in its original
form for the evaluation of the deviation of specific symmetry
elements from being perfect, including theCn

m elements, which
are relevant for this report. We exemplify the procedure for a
2D pentagon, from which one needs to evaluate each of the
Sy(C5

m) values (the degree of content of each of the{E C5 C5
2

C5
3 C5

4} elements) to determine its continuous symmetry num-
ber. Denote the vertices of the pentagon by (clockwise) I, II,
III, IV, V, and suppose one wishes to determine the deviation
of the pentagon for being perfectly symmetric with respect to
the C5

2 operation (a 2π/5/2 ) 4π/5 ) 144° rotation). The
folding steps are carried out as follows (cf., ref 19):E is applied
on vertex I, and it stays in place. Vertex II is rotated (clockwise)
by applying the 144° rotation twice; vertex III is rotated by
applying it four times; vertex IV is rotated by applying it once;
and vertex V is rotated by applying it three times. A cluster of
rotated vertices forms around vertex I, which is then averaged,
and the averaged vertex is unfolded by applying the 144°
rotation once (recreating vertex III), twice (recreating vertex
V), thrice (for vertex II), and four times for vertex IV.

JA020619W

(55) Data taken from ref 56; the molecular structures of the anions are after
geometry optimization, using DFT calculations; the distortions were
attributed there to the Jahn-Teller effect.

(56) Green, W. E.; Gorun, S. M.; Fitzgerald, G.; Fowler, P. W.; Ceulemans,
A.; Titeca, B. C.J. Phys. Chem. A1996, 100, 14892.

(57) The standard deviations are 8.93× 10-3 for the CdC distances and 8.46
× 10-3 for the cage radii.56

Table 2. Classical and Continuous Symmetry Numbers of
Fullerene Anions, Their Rotational Entropies, Structural
Parameters, and Experimental Reduction Potentialsa

anion
symmetry

group σ
−∆Sσ

(J/K mol) σc

−∆Sσc

(J/K mol)
CdC

(Å)
R
(Å)

RP
(exp., eV)

C60
1- D3h 6 19.144 58.7295 0.1779 1.3997 3.5379-1.37

C60
2- D3h 6 19.144 58.7218 0.1790 1.4047 3.5419-1.87

C60
3- Ci 1 34.040 58.7161 0.1798 1.4106 3.5469-2.35

C60
4- D5h 10 14.897 58.7158 0.1799 1.4160 3.5526-2.85

C60
5- D2h 4 22.515 58.7123 0.1804 1.4223 3.5592-3.26

a Third and fourth column: the classical approach. Fifth and sixth
columns: the continuous approach. Last columns: double bond lengths,
radii, and reduction potentials.

Continuous Symmetry Numbers and Entropy A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 14, 2003 4375


